首页> 外文OA文献 >A Cellular Automata Approach for the Simulation and Development of Advanced Phase Change Memory Devices
【2h】

A Cellular Automata Approach for the Simulation and Development of Advanced Phase Change Memory Devices

机译:一种用于高级相变存储器件仿真和开发的元胞自动机方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Phase change devices in both optical and electrical formats have been subject of intenseresearch since their discovery by Ovshinsky in the early 1960â\u80\u99s. They have revolutionizedthe technology of optical data storage and have very recently been adopted fornon-volatile semiconductor memories. Their great success relies on their remarkableproperties enabling high-speed, low power consumption and stable retention. Nevertheless,their full potential is still yet to be realized.Operations in electrical phase change devices rely on the large resistivity contrast betweenthe crystalline (low resistance) and amorphous (high resistance) structures. Theunderlying mechanisms of phase transformations and the relation between structuraland electrical properties in phase change materials are quite complex and need to beunderstood more deeply. For this purpose, we compare different approaches to mathematicalmodelling that have been suggested to realistically simulate the crystallizationand amorphization of phase change materials. In this thesis the recently introducedGillespie Cellular Automata (GCA) approach is used to obtain direct simulation of thestructural phases and the electrical states of phase change materials and devices. TheGCA approach is a powerful technique to understand the nanostructure evolution duringthe crystallization (SET) and amorphization (RESET) processes in phase change devicesover very wide length scales. Using this approach, a detailed study of the electrical propertiesand nanostructure dynamics during SET and RESET processes in a PCRAM cellis presented.Besides the possibility of binary storage in phase change memory devices, there is awider and far-reaching potential for using them as the basis for new forms of arithmeticand cognitive computing. The origin of such potential lies in a previously under-explored property, namely accumulation which has the potential to implement basic arithmeticcomputations. We exploit and explore this accumulative property in films and devices.Furthermore, we also show that the same accumulation property can be used to mimic asimple integrate and fire neuron. Thus by combining both a phase change cell operatingin the accumulative regime for the neural body and a phase change cell in the multilevelregime for the synaptic weighting an artificial neuromorphic system can be obtained.This may open a new route for the realization of phase change based cognitive computers.This thesis also examines the relaxation oscillations observed under suitable biasconditions in phase change devices. The results presented are performed through acircuit analysis in addition with a generation and recombination mechanism driven bythe electric field and carrier densities. To correctly model the oscillations we show thatit is necessary to include a parasitic inductance.Related to the electrical states of phase change materials and devices is the thresholdswitching of the amorphous phase at high electric fields and recent work has suggestedthat such threshold switching is the result of field-induced nucleation. An electric fieldinduced nucleation mechanism is incorporated into the GCA approach by adding electricfield dependence to the free energy of the system. Using results for a continuous phasechange thin films and PCRAM devices we show that a purely electronic explanation ofthreshold switching, rather than field-induced nucleation, provides threshold fields closerto experimentally measured values.
机译:自从Ovshinsky在1960年代初发现光学和电子相变设备以来,它们一直是研究的热点。它们彻底改变了光学数据存储技术,最近已被用于非易失性半导体存储器。它们的巨大成功取决于其卓越的性能,可实现高速,低功耗和稳定的保留。然而,它们的全部潜能仍有待实现。电相变器件的操作依赖于晶体(低电阻)和非晶(高电阻)结构之间的大电阻率差异。相变材料的基本相变机理以及结构和电学性质之间的关系非常复杂,需要深入理解。为此,我们比较了数学建模的不同方法,这些方法已被提出来现实地模拟相变材料的结晶和非晶化。在本文中,最近引入的吉莱斯皮细胞自动机(GCA)方法用于直接模拟相变材料和器件的结构相和电态。 GCA方法是一种强大的技术,可用于了解相变器件在很宽的长度范围内的结晶(SET)和非晶化(RESET)过程中的纳米结构演变。使用这种方法,对PCRAM单元的SET和RESET过程中的电学性质和纳米结构动力学进行了详细研究。除了在相变存储器件中进行二进制存储的可能性外,将它们用作基础还具有更广泛和深远的潜力用于算术和认知计算的新形式。这种潜力的起源在于先前未被充分开发的属性,即具有实现基本算术运算潜力的积累。我们利用并探索了膜和器件中的这种累积特性。此外,我们还表明,相同的累积特性可用于模拟简单整合和激发神经元。因此,通过结合在神经体的累积状态下运行的相变细胞和在多级区域中用于突触加权的相变细胞,可以获得人工神经形态系统,这可能为实现基于相变的认知开辟新的途径本文还研究了在适当的偏置条件下在相变装置中观察到的弛豫振荡。给出的结果是通过电路分析以及由电场和载流子密度驱动的生成和复合机制进行的。为了正确地模拟振荡,我们表明有必要包括一个寄生电感。与相变材料和器件的电态有关的是高电场下非晶相的阈值转换,最近的工作表明这种阈值转换是由以下因素引起的:场致核。通过将电场依赖性添加到系统的自由能中,将电场诱导的成核机制结合到GCA方法中。使用连续相变薄膜和PCRAM器件的结果,我们显示了阈值切换的纯电子解释,而不是磁场感应的成核,提供了更接近实验测量值的阈值场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号